EXISTENCE OF LIMIT CYCLES
FOR COUPLED VAN DER POL EQUATIONS

NORIMICHI HIRANO AND SLAWOMIR RYBICKI†

Abstract. In this paper, we consider the existence of limit cycles of coupled van der Pol equations by using S^1-degree theory due to Dylawerski et al., see [3].

1. Introduction

In this paper, we consider the existence of limit cycles of coupled van der Pol equations of the form

\[
\begin{align*}
\ddot{u}_1 + \varepsilon_1 (u_1^2 - a_1)\dot{u}_1 + c_{11}u_1 + c_{12}u_2 + c_{13}u_3 + \ldots + c_{1n}u_n &= 0, \\
\ddot{u}_2 + \varepsilon_2 (u_2^2 - a_2)\dot{u}_2 + c_{21}u_1 + c_{22}u_2 + c_{23}u_3 + \ldots + c_{2n}u_n &= 0, \\
\vdots \\
\ddot{u}_n + \varepsilon_n (u_n^2 - a_n)\dot{u}_n + c_{n1}u_1 + c_{n2}u_2 + c_{n3}u_3 + \ldots + c_{nn}u_n &= 0,
\end{align*}
\]

where $n \geq 1, \varepsilon_i > 0$ for each $i = 1, \ldots, n$, and $c_{ij} \in \mathbb{R}$ for all $1 \leq i, j \leq n$.

The coupled van der Pol equation has been studied as a model of self-excited systems. This kind of systems appears in a wide variety of mechanical, electronical and biological systems. A limit cycle is a nontrivial periodic solution of the autonomous system above. The existence of a limit cycle of one dimensional van der Pol equation

\[
\ddot{u} + \varepsilon (u^2 - 1)\dot{u} + u = 0 \tag{1.1}
\]

is well known. The proof of the existence of the limit cycle is based on the Poincaré-Bendixson theorem(cf. [6], [15]). In contrast to one dimensional case, the existence of limit cycles for coupled van der Pol equations is not yet established except some restrictive cases(cf. [17]). In the present paper, we prove the existence of limit cycles for coupled van der Pol equations by using S^1-degree theory, see [3]. To avoid unnecessary complexity, we restrict ourselves to the case $n = 2$. That is we consider the problem

\[
\begin{align*}
\ddot{u}_1 + \varepsilon_1 (u_1^2 - 1)\dot{u}_1 + u_1 + c_2u_2 &= 0, \\
\ddot{u}_2 + \varepsilon_2 (u_2^2 - 1)\dot{u}_2 + c_1u_1 + u_2 &= 0,
\end{align*}
\]

(P)

Our argument below remains valid for the case that $n > 2$. We impose that following condition on c_1 and c_2 :

\[
c_1 \cdot c_2 \in (0, 1) \cup (1, +\infty) \tag{A}
\]

We can now state our main results:

Date: January 12, 2006.

1991 Mathematics Subject Classification. Primary 05C38, 15A15; Secondary 05A15, 15A18.

Key words and phrases. Limit cycles, von der Pol system, S^1-degree.

†Research supported by the State Committee for Scientific Research grant No. 5 PO3A 026 20.
Theorem 1.1. For any \(\alpha > \frac{1}{\sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1}}}}} \), there exist \(\varepsilon_1, \varepsilon_2 > 0 \) such that problem (P) has a nontrivial periodic solution \(u \in C^2(\mathbb{R}, \mathbb{R}^2) \) with period \(2\pi \alpha \).

Theorem 1.2. There exists \(C > 0 \) such that for any \((\varepsilon_1, \varepsilon_2) \in \mathbb{R}^+ \times \mathbb{R}^+ \) such that \(\max \{ \varepsilon_1, \varepsilon_2 \} < C \), problem (P) possesses a nontrivial periodic solution \(u \in C^2(\mathbb{R}, \mathbb{R}^2) \) with period \(2\pi \alpha \) for some \(\alpha > 1 \).

For the convenience of the reader we have included some references related to the equivariant degree methods.

The first degree theory for admissible \(S^1 \)--equivariant gradient maps, which is a rational number, is due to Dancer [1]. Degree theories for \(S^1 \)--equivariant maps have been defined by Ize and Vignoli in [9], [11], [12]. A definition of degree theory for equivariant orthogonal maps (symmetries of any compact abelian Lie group are admitted) is due to Ize and Vignoli [12]. Finally, degree theory for \(G \)--equivariant gradient maps, where \(G \) is any compact Lie group, is due to Gęba [4].

2. Preliminaries

We denote by \(\langle \cdot, \cdot \rangle_{>2} \) the scalar product of \(L^2([0,2\pi], \mathbb{R}^2) \). Define

\[
\mathbb{H}_{\text{per}} = \{ v : \mathbb{R} \to \mathbb{R}^2 : v \text{ is absolutely continuous, } \langle \dot{v}, \dot{v} \rangle_{>2} < \infty \text{ and } v(t) = v(t + 2\pi) \ \forall \ t \in \mathbb{R} \},
\]

and scalar products \(\langle \cdot, \cdot \rangle_{\mathbb{H}_{\text{per}}} : \mathbb{H}_{\text{per}} \times \mathbb{H}_{\text{per}} \to \mathbb{R} \) as follows

\[
\langle w, v \rangle_{\mathbb{H}_{\text{per}}} = \langle w, v \rangle_{>2} + \langle \dot{w}, \dot{v} \rangle_{>2}.
\]

Let \(S^1 = \{ z \in \mathbb{C} : |z| = 1 \} = \{ e^{i\theta} : \theta \in \mathbb{R} \} \) be the group of complex numbers of module 1 with an action given by multiplication of complex numbers. For any fixed \(m \in \mathbb{N} \) we denote by \(\mathbb{Z}_m \) a cyclic group of order \(m \) and define homomorphism \(\rho_m : S^1 \to GL(2, \mathbb{R}) \) as follows

\[
\rho_m(e^{i\theta}) = \begin{bmatrix} \cos(m\theta) & -\sin(m\theta) \\ \sin(m\theta) & \cos(m\theta) \end{bmatrix}.
\]

Of course \(\mathbb{R}[1, m] := (\mathbb{R}^2, \rho_m) \) is a two-dimensional representation of the group \(S^1 \). We will denote by \(\mathbb{R}[k, m] \) the direct sum of \(k \) copies of representation \(\mathbb{R}[1, m] \) and by \(\mathbb{R}[k, 0] \) \(k \)--dimensional trivial representation of the group \(S^1 \). Define action \(\rho : S^1 \times \mathbb{H}_{\text{per}} \to \mathbb{H}_{\text{per}} \) of the group \(S^1 \) as follows

\[
\rho(e^{i\theta}, v(t)) = v(t + \theta)
\]

(2.1)

In the following fact we collect some well known properties of the space \(\mathbb{H}_{\text{per}} \).

Fact 2.1. Under the above assumptions:

1. \((\mathbb{H}_{\text{per}}, \langle \cdot, \cdot \rangle_{\mathbb{H}_{\text{per}}}) \) is a separable Hilbert space,
2. \((\mathbb{H}_{\text{per}}, \langle \cdot, \cdot \rangle_{\mathbb{H}_{\text{per}}}) \) is an orthogonal representation of the group \(S^1 \) with \(S^1 \)--action given by (2.1),
Since $\mathbb{Z}_2 \subseteq S^1$, one can consider \mathbb{H}_{per} as a \mathbb{Z}_2–space. Let $(\mathbb{H}_{\text{per}})^{\mathbb{Z}_2}$ denote the set of fixed points of the action of the group \mathbb{Z}_2 on \mathbb{H}_{per}. Moreover, by $(\mathbb{H}_{\text{per}})^{\mathbb{Z}_2}_\perp$ we denote the orthogonal complement of $(\mathbb{H}_{\text{per}})^{\mathbb{Z}_2}$ in \mathbb{H}_{per}.

Define

$$
\mathbb{H} = \{ v : \mathbb{R} \to \mathbb{R}^2 : v \text{ is absolutely continuous, } <\dot{v}, \dot{v}>_2 < \infty \text{ and } v(t) = -v(\pi + t) \ \forall \ t \in \mathbb{R} \}.
$$

In the following fact we collect some well known properties of the space \mathbb{H}.

Fact 2.2. Under the above assumptions:

1. $\mathbb{H} = \left((\mathbb{H}_{\text{per}})^{\mathbb{Z}_2} \right)_\perp$,
2. $(\mathbb{H}, <\cdot, \cdot>)_{\mathbb{H}}$ is a separable Hilbert space,
3. $(\mathbb{H}, <\cdot, \cdot>)_{\mathbb{H}}$ is an orthogonal representation of the group S^1 with S^1–action given by the restriction of (2.1),
4. $\mathbb{H} = \text{cl} \left(\bigoplus_{n=1}^{\infty} \mathbb{R}[2,2n-1] \right)$.

Let $v = (v_1, v_2)$ be a periodic solution of (P) with period $2\pi \alpha$ for some $\alpha > 1$. Then by putting $t = \alpha \tau$ and $u(\tau) = (u_1(\tau), u_2(\tau)) = (v_1(\alpha \tau), v_2(\alpha \tau))$, we find that $u = (u_1, u_2) \in \mathbb{H}$ is a 2π–periodic solution of problem

$$
\begin{aligned}
\dot{u}_1 + \varepsilon_1 \alpha (u_1^2 - 1) \dot{u}_1 + \alpha^2 (u_1 + c_2 u_2) &= 0, \\
\dot{u}_2 + \varepsilon_2 \alpha (u_2^2 - 1) \dot{u}_2 + \alpha^2 (c_1 u_1 + u_2) &= 0,
\end{aligned}
\tag{2.2}
$$

Here we put

$$
F(u) = \begin{pmatrix}
\varepsilon_1 \left(\frac{1}{3} u_1^3 - u_1 \right) \\
\varepsilon_2 \left(\frac{1}{3} u_2^3 - u_2 \right)
\end{pmatrix}, \quad A = \begin{pmatrix} 1 & c_2 \\ c_1 & 1 \end{pmatrix}.
$$

In this way we have converted problem (P) of finding of periodic solutions of any period into 1–parameter problem (2.2) of finding of periodic solutions of a fixed period 2π.

Lemma 2.1. Let Hilbert space \mathbb{H} and operator F will be defined as above. Then,

1. $F : \mathbb{H} \to \mathbb{H}$ is well-defined continuous operator,
2. for any $w \in \mathbb{H}$ the following holds true:
 (a) $w(t) = w(t + 2\pi)$, for any $t \in \mathbb{R}$,
 (b) $\int_{0}^{2\pi} w(t) dt = 0$,
 (c) $\int_{0}^{2\pi} w(\tau) d\tau \in \mathbb{H}_{\text{per}},$
 (d) $< \int_{0}^{t} w(\tau) d\tau, (\cos(2nt), \cos(2nt)) >_{\mathbb{H}_{\text{per}}} = < \int_{0}^{t} w(\tau) d\tau, (\sin(2nt), \sin(2nt)) >_{\mathbb{H}_{\text{per}}} = 0$, for any $n \in \mathbb{N}$.
3. if $w \in \mathbb{H}$, then $\int_{0}^{t} F(w(\tau)) d\tau \in \mathbb{R}[2,0] \oplus \mathbb{H}$.

Proof. The easy proof is left to the reader. □
Notice that (2.2) can be rewritten as
\[\ddot{u} + \alpha \frac{d}{dt} F(u) + \alpha^2 Au = 0. \] (2.3)

We will find a solution \(u = (u_1, u_2) \in \mathbb{H} \) of (2.2). We denote by \(L_1 : \mathbb{H} \to \mathbb{H} \) the inverse of the mapping \(u \to -\dot{u} \) for \(u \in \mathbb{H} \). That is \(u = L_1(-\dot{u}) \) for \(u \in \mathbb{H} \). We also put \(Lu = L_1Au \) for each \(u \in \mathbb{H} \). Denote by \(\sigma(L) \) the spectrum of \(L \). If \(\mu \in \sigma(L) \) then \(V(\mu) \) denotes the eigenspace of \(L \) corresponding to the eigenvalue \(\mu \). Notice that to describe eigenvalues and eigenspaces of the operator \(L \) it is enough to consider equation \(\ddot{u} + \frac{1}{\mu}Au = 0 \).

Fact 2.3. Suppose that \(c_1c_2 \in (0, 1) \cup (1, +\infty) \). Then, \(\sigma(L) = \bigcup_{n \in \mathbb{N}} \left\{ \mu_n^\pm = \frac{1 \pm \sqrt{c_1c_2}}{2n-1} \right\} \). Moreover,

1. \(V(\mu_n^+) \cong \mathbb{R}[1, 2n-1] \),
2. \(\mathbb{H} = cl \left(\bigoplus_{i=1}^{\infty} (V(\mu_n^-) \oplus V(\mu_n^+)) \right) \),
3. if \(c_1c_2 \in (0, 1) \), then \(\mu_1^+ > \mu_1^- > \mu_2^+ > \mu_2^- > \ldots > \mu_n^+ > \mu_n^- > \ldots > 0 \),
4. if \(c_1c_2 > 1 \), then \(\mu_1^+ > \mu_2^+ > \ldots > \mu_n^+ > \ldots > 0 \) and \(\mu_n^- < 0 \) for any \(n \in \mathbb{N} \).

Let \(m, M \in \mathbb{R} \) be such that \(0 < m < M \). Let \(\eta : \mathbb{R} \to [0, 1] \) be a smooth function such that
\[\eta(t) = \begin{cases} 0, & \text{if } \|t\| \leq \frac{m^2}{2}, \\ 1, & \text{if } \|t\| \geq \frac{M^2}{2}, \end{cases} \]
and that \(\eta'(t) > 0 \) for \(t \in \left(\frac{m^2}{2}, \frac{M^2}{2} \right) \). Moreover, define a smooth \(S^1 \)-equivariant function \(\theta : \mathbb{H} \to [0, 1] \) by the following formula
\[\theta(u) = \eta \left(\frac{\|u\|^2}{2} \right) \] (2.4)

Denote by \(\pi : \mathbb{R}[2, 0] \oplus \mathbb{H} \to \mathbb{H} \) the \(S^1 \)-equivariant orthogonal projection. Since Lemma 2.1, for each \(\alpha > 0 \) and \(\delta \in [0, 1] \), we define a mapping \(G(\cdot, \alpha, \delta) : \mathbb{H} \to \mathbb{H} \) by
\[G(v, \alpha, \delta) = -\delta \alpha \pi \left(\int_0^t F(v(\tau))d\tau \right) + \alpha^2 \theta(v)L(v) \] (2.5)

Then each solution \(u \in \mathbb{H} \) of problem \(G(u, \alpha, \delta) = u \) for some \((\alpha, \delta) \in \mathbb{R}^+ \times \mathbb{R}^+ \) satisfies
\[\ddot{u} + \delta \alpha \frac{d}{dt} F(u) + \alpha^2 \theta(u)Au = 0 \] (2.6)

We will also consider the following family of differential equations
\[\ddot{u} + \delta \alpha \frac{d}{dt} F(u) + \alpha^2 Au = 0 \] (2.7)

Below we formulate and prove three technical lemmas which we will apply in the next sections.

Lemma 2.2. There exists a monotone increasing function \(m(\cdot) : \mathbb{R}^+ \to \mathbb{R}^+ \) such that for each \(\delta \in (0, 1] \), \(\alpha \in \mathbb{R}^+ \) and each solution \(u \in \mathbb{H} \) of problem (2.7) inequality \(\|u\| \leq m(\alpha) \) holds.
Proof. Fix $\alpha \in \mathbb{R}^+$ and $\delta \in (0, 1]$. Let $u \in \mathbb{H}$ be a solution of (2.7). Multiplying (2.7) by \dot{u} and integrating over $[0, 2\pi]$, we find that

$$
\begin{cases}
\delta \alpha \varepsilon_1 \int_0^{2\pi} (u_1^2 - 1) \dot{u}_1^2 + \alpha^2 c_2 \int_0^{2\pi} \dot{u}_1 u_2 = 0, \\
\delta \alpha \varepsilon_2 \int_0^{2\pi} (u_2^2 - 1) \dot{u}_2^2 + \alpha^2 c_1 \int_0^{2\pi} u_1 \dot{u}_2 = 0.
\end{cases}
$$

Then we have that

$$
c_1 \varepsilon_1 \int_0^{2\pi} (u_1^2 - 1) \dot{u}_1^2 + c_2 \varepsilon_2 \int_0^{2\pi} (u_2^2 - 1) \dot{u}_2^2 = 0
$$

That is

$$
c_1 \varepsilon_1 \int_0^{2\pi} u_1^2 \dot{u}_1^2 + c_2 \varepsilon_2 \int_0^{2\pi} u_2^2 \dot{u}_2^2 = c_1 \varepsilon_1 \int_0^{2\pi} \dot{u}_1^2 + c_2 \varepsilon_2 \int_0^{2\pi} \dot{u}_2^2.
$$

Since $c_1 c_2 > 0$, it follows that there exists $C_1 > 0$ such that

$$
\int_0^{2\pi} u_1^2 \dot{u}_1^2 + u_2^2 \dot{u}_2^2 \leq C_1 \int_0^{2\pi} \dot{u}_1^2 + \dot{u}_2^2
$$

On the other hand by the Schwartz inequality, we have

$$
|u_1(t)|^2 \leq 2 \int_{s_1}^t |u_1 \dot{u}_1| \, dt \leq 2\sqrt{2\pi} \left(\int_0^{2\pi} |u_1|^2 |\dot{u}_1|^2 \right)^{1/2}
$$

and

$$
|u_2(t)|^2 \leq 2 \int_{s_2}^t |u_2 \dot{u}_2| \, dt \leq 2\sqrt{2\pi} \left(\int_0^{2\pi} |u_2|^2 |\dot{u}_2|^2 \right)^{1/2}
$$

for all $t \in [0, 2\pi]$, where $s_1, s_2 \in [0, 2\pi]$ satisfy $u_1(s_1) = u_2(s_2) = 0$. It then follows from (2.9) and the inequalities above that there exists $C_2 > 0$ such that

$$
|u(t)|^2 \leq C_2 |\dot{u}|_2 \quad \text{for all } t \in [0, 2\pi]
$$

We next multiply (2.7) by u and integrate over $[0, 2\pi]$. Then we have that

$$
|\dot{u}|_2^2 = \alpha^2 \langle Au, u \rangle \leq \alpha^2 \|A\| |u|_2^2,
$$

where $\|A\|$ denotes the operator norm of matrix A. Then by (2.10), we have $|u|_2^2 \leq 2\pi C_2 |\dot{u}|_2 \leq 2\pi C_2 \alpha \sqrt{\|A\|} |u|_2$. It then follows from the inequality above that $|u|_2 \leq 2\pi C_2 \alpha \|A\|$ and then $|\dot{u}|_2 \leq 2\pi C_2 \alpha \sqrt{\|A\|}$. Then by putting $m(\alpha) = 2\pi C_2 \sqrt{\|A\|} \alpha (1 + \sqrt{\|A\|} \alpha)$ for each $\alpha \in \mathbb{R}^+$, we reach to the assertion.

Lemma 2.3. For each $\alpha > 0$, there exists $\delta_1(\alpha') > 0$ such that the problem (2.7) has no nontrivial solution in \mathbb{H} for each $\alpha \in (0, \alpha')$ and $\delta > \delta_1(\alpha')$.

Proof. Fix $\delta > 0, \alpha' > 0$ and $\alpha \in (0, \alpha')$. Let $u \in \mathbb{H}$ be a solution of (2.7). Multiplying (2.7) by \dot{u} and integrating over $[0, 2\pi]$ we find that

$$
c_1 \varepsilon_1 \int_0^{2\pi} (u_1^2 - 1) \dot{u}_1^2 + c_2 \varepsilon_2 \int_0^{2\pi} (u_2^2 - 1) \dot{u}_2^2 = 0.
$$

Since $u(t) = -u(t + \pi)$ and the above, there exists $t_0 \in [0, 2\pi]$ such that $u_1(t_0) = 1$ or $u_2(t_0) = 1$. Without loss of the generality one can assume that $u_1(t_0) = 1$ holds. We also may assume that $\dot{u}_1(t_0) \leq 0$. Suppose that $\dot{u}_1(t_0) > 0$. Since $\dot{u}_1(t_0) > 0$, $u_1(t_0) = 1$ and $u_1(t_0 + \pi) = -1$, there
exists \(t_0' > t_0 \) such that \(u_1(t_0') = 1 \) and \(\dot{u}_1(t_0') \leq 0 \). Then we assume that \(\dot{u}_1(t_0) \leq 0 \). We next integrate (2.7) over \([t_0 - \pi, t_0]\). Then notice that \(\dot{u}(t) = -\dot{u}(t - \pi) \) and \(u(t) = -u(t - \pi) \), we have

\[
2\dot{u}_1(t_0) + 2\alpha\delta\epsilon_1 \left(\frac{1}{3} u_1^3(t_0) - u_1(t_0) \right) = 2\dot{u}_1(t_0) - \frac{4}{3} \alpha\delta\epsilon_1 = -\alpha^2 \int_{t_0 - \pi}^{t_0} (u_1(t) + c_2 u_2(t)) dt.
\]

From the above and Lemma 2.2, by the Schwartz inequality we obtain the following

\[
0 \geq \dot{u}_1(t_0) = \frac{2}{3} \alpha\delta\epsilon_1 - \frac{\alpha^2}{2} \int_{t_0 - \pi}^{t_0} (u_1(t) + c_2 u_2(t)) dt \geq \alpha \left(\frac{2}{3} \delta\epsilon_1 - \alpha' \alpha \int_{t_0 - \pi}^{t_0} (|u_1(t)| + |c_2| |u_2(t)|) dt \right) \geq \alpha \left(\frac{2}{3} \delta\epsilon_1 - \frac{\alpha'}{2} \max\{1, |c_2|\} \int_{t_0 - \pi}^{t_0} (|u_1(t)| + |u_2(t)|) dt \right) \geq \alpha \left(\frac{2}{3} \delta\epsilon_1 - \frac{\alpha'}{2} \max\{1, |c_2|\} \sqrt{\pi} \|u\| \right) \geq \alpha \left(\frac{2}{3} \delta\epsilon_1 - \alpha' \max\{1, |c_2|\} \sqrt{\pi} m(\alpha') \right).
\]

Therefore to complete the proof it is enough to put

\[
\delta_1(\alpha') = \frac{3}{2\epsilon_1} \alpha' \max\{1, |c_2|\} \sqrt{\pi} m(\alpha').
\]

\(\square \)

Lemma 2.4. For each \(\frac{1}{\alpha^2} \in \mathbb{R}^+ \setminus \sigma(L) \), there exists \(\delta_2(\alpha) > 0 \) such that there exists no nontrivial solution of (2.7) in \(\mathbb{H} \) for all \(\delta \in (0, \delta_2(\alpha)) \).

Proof. Fix \(\frac{1}{\alpha^2} \in \mathbb{R}^+ \setminus \sigma(L) \). Suppose contrary to our claim that there exists a sequence \(\{(u_n, \delta_n)\} \subset \mathbb{H} \times \mathbb{R}^+ \) such that \(\lim_{n \to \infty} \delta_n = 0 \) and each \(u_n \) is a solution of (2.7) with \(\delta = \delta_n \).

Then by Lemma 2.2, sequence \(\{u_n\} \) is bounded in \(\mathbb{H} \). Therefore we may assume that \(u_n \) converges to \(u \in \mathbb{H} \) weakly in \(\mathbb{H} \) and strongly in \(L^2([0, 2\pi]; \mathbb{R}^2) \). Then since \(\sup_{t \in [0, 2\pi]} |u_n(t)| \geq 1 \) for each \(n \geq 1 \), we find that \(u \neq 0 \). Also one can see that \(u \) satisfies \(\ddot{u} + \alpha^2 Au = 0 \). That is \(Lu = \frac{1}{\alpha^2} u \).

Since \(\frac{1}{\alpha^2} \notin \sigma(L) \), this is a contradiction. Then the assertion holds. \(\square \)

3. \(S^1 \)-degree

Denote by \(\Gamma_0 \) the free abelian group generated by \(\mathbb{N} \) and let \(\Gamma = \mathbb{Z}_2 \oplus \Gamma_0 \). Then \(\gamma \in \Gamma \) means \(\gamma = \{\gamma_r\} \), where \(\gamma_0 \in \mathbb{Z}_2 \) and \(\gamma_r \in \mathbb{Z} \) for \(r \in \mathbb{N} \). Let \(V \) be a Hilbert space which is a representation of \(S^1 \). For each proper subgroup \(Q \subseteq \mathbb{H} \) and each \(S^1 \)-equivariant subset \(X \) of \(V \), we denote \(X^Q \) the subset of fixed points of \(Q \) in \(X \). For each \(U \subset V \subset \mathbb{R} \) and each \(S^1 \) equivariant compact mapping \(f : U \to V \), we define, by using the fact that there is a one-to-one correspondence between \(\mathbb{H} \) and the proper, closed subgroups \(Q \subseteq \mathbb{H} \), \(\text{Deg}(I - f, U) = \{\gamma_r\} \in \Gamma \) by \(\gamma_0 = \text{deg}_{S^1}(I - f, U) \) and \(\gamma_r = \text{deg}_{S^1}(I - f, U), r \in \mathbb{N} \) (cf. [3] and [16]). Next theorem has been formulated and proved in [3] and describe properties of \(S^1 \)-degree.
Lemma 3.5. Since (3.1) is bounded, invariant subset of V, then $\text{Deg}(I - f, U)$ satisfies (3.3).

Let U be a Hilbert space which is a representation of S^1, U be an open bounded, invariant subset of $V \oplus \mathbb{R}$ and $f : U \to V$ is a compact S^1-mapping such that $(I - f)(\partial U) \subset V \setminus \{0\}$. Then there exists a Γ-valued function $\text{Deg}(I - f, U)$ called S^1-degree, satisfying the following properties:

(a) if $\text{deg}_Q(I - f, U) \neq 0$, then $(I - f)^{-1}(0) \cap U^Q \neq \phi$,
(b) if $U_0 \subset U$ is open, invariant and $(I - f)^{-1}(0) \cap U \subset U_0$, then
\[
\text{Deg}(I - f, U) = \text{Deg}(I - f, U_0);
\]
(c) if $h : cl(U) \times [0, 1] \to V$ is an S^1-equivariant homotopy of compact mappings such that $(I - h)(\partial U \times [0, 1]) \subset V \setminus \{0\}$, Then
\[
\text{Deg}(I - h_0, U) = \text{Deg}(I - h_1, U).
\]

To apply S^1-degree theory to our problem, we need some definitions. Since Lemma 2.1, we define bounded operator $E : \mathbb{H} \to \mathbb{H}$ as follows
\[
E(v) = \pi \left(\begin{array}{c} \varepsilon_1 \int_0^t v_1 dt \\ \varepsilon_2 \int_0^t v_2 dt \end{array} \right) \text{ for each } v = (v_1, v_2) \in \mathbb{H}.
\]

For each $\alpha > 0$ and $\delta \in [0, 1]$, we define a mapping $H(\cdot, \cdot, \alpha, \delta) : \mathbb{H} \oplus \mathbb{R} \to \mathbb{H}$ by
\[
H(u, \lambda, \alpha, \delta) = G(u, \alpha, \delta) + \lambda \alpha E(u).
\]

It is easy to see that $H(\cdot, \cdot, \alpha, \delta)$ is an S^1-equivariant compact mapping. One can see that if $u \in \mathbb{H}$ satisfies $u = H(\cdot, \cdot, \alpha, \delta)$ for $(\alpha, \delta) \in \mathbb{R}^+ \times \mathbb{R}^+$ then
\[
\ddot{u} + \delta \alpha \frac{d}{dt} F(u) + \alpha^2 \theta(u) Au = \lambda \alpha \frac{d^2}{dt^2} E(u)
\]
\[
(3.1)
\]
or in equivalent form
\[
\begin{array}{l}
\ddot{u}_1 + \delta \varepsilon_1 \alpha (u_2^2 - 1) \dot{u}_1 + \alpha^2 \theta(u)(u_1 + c_2 u_2) = \varepsilon_1 \alpha \lambda \dot{u}_1,
\ddot{u}_2 + \delta \varepsilon_2 \alpha (u_2^2 - 1) \dot{u}_2 + \alpha^2 \theta(u)(c_1 u_1 + u_2) = \varepsilon_2 \alpha \lambda \dot{u}_2,
\end{array}
\]
\[
(3.2)
\]

Lemma 3.5. Let $\alpha, \delta > 0$ and $\lambda \in \mathbb{R}$. Suppose that $u = (u_1, u_2) \in \mathbb{H}$ is a nontrivial solution of (3.1). Then $\lambda + \delta > 0$ and $w = \sqrt{\frac{\delta}{\lambda + \delta}} u$ is a solution of equation
\[
\dot{w} + (\lambda + \delta) \alpha \frac{d}{dt} F(w) + \alpha^2 \theta(u) Aw = 0
\]
\[
(3.3)
\]

Proof. Let $u \in \mathbb{H}$ be a nontrivial solution of (3.1). First of all we will show that $\lambda + \delta > 0$. Notice that (3.2) can be represented in the following form
\[
\begin{array}{l}
\ddot{u}_1 + \varepsilon_1 \alpha (\delta u_1^2 - (\lambda + \delta)) \dot{u}_1 + \alpha^2 \theta(u)(u_1 + c_2 u_2) = 0,
\ddot{u}_2 + \varepsilon_2 \alpha (\delta u_2^2 - (\lambda + \delta)) \dot{u}_2 + \alpha^2 \theta(u)(c_1 u_1 + u_2) = 0,
\end{array}
\]
\[
(3.4)
\]
Multiplying (3.4) by $(c_1 \dot{u}_1, c_2 \dot{u}_2)$ and integrating over $[0, 2\pi]$ we obtain the following
\[
c_1 \varepsilon_1 (u_1^2 - (\lambda + \delta)) u_1^2 + c_2 \varepsilon_2 (u_2^2 - (\lambda + \delta)) u_2^2 = 0.
\]

Since u is a nonzero function, we obtain $\lambda + \delta > 0$. Putting $u = \sqrt{\frac{\lambda + \delta}{\delta}} w$ in (3.4) we find that w satisfies (3.3). □
Lemma 3.6. Let $\alpha > 0$ be such that $\frac{1}{\alpha^2} \notin \sigma(L)$ and $n_0 = \max_{n \in \mathbb{N}} \{ \mu^+_n > \frac{1}{\alpha^2} \}$. Then,

(1) if $c_1c_2 \in (0, 1)$, then

\[
\text{deg}_Q(Id - H(\cdot, \cdot, \alpha, 0), U) = \begin{cases}
0, & Q = S^1, \\
2, & Q = \mathbb{Z}_{2m-1} \text{ for } m \in \{1, \ldots, n_0 - 1\}, \\
2, & Q = \mathbb{Z}_{2n_0-1} \text{ and } \mu^-_{n_0} > \frac{1}{\alpha^2}, \\
1, & Q = \mathbb{Z}_{2n_0-1} \text{ and } \mu^-_{n_0} < \frac{1}{\alpha^2}, \\
0, & \text{otherwise,}
\end{cases}
\]

where $U = \{ u \in \mathbb{H} : m < \|u\| < M \} \times [-1, 1],$

(2) if $c_1c_2 > 1$, then

\[
\text{deg}_Q(Id - H(\cdot, \cdot, \alpha, 0), U) = \begin{cases}
0, & Q = S^1, \\
1, & Q = \mathbb{Z}_{2m-1} \text{ for } m \in \{1, \ldots, n_0\}, \\
0, & \text{otherwise,}
\end{cases}
\]

where $U = \{ u \in \mathbb{H} : m < \|u\| < M \} \times [-1, 1].$

Proof. 1. Without loss of the generality one can assume that $\mu^-_{n_0} > \frac{1}{\alpha^2}$. The assertion is a slight modification of Corollary 4.7 of [16] and the proof is basically the same as that of Theorem 4.2 of [16]. Then we just show the sketch of the proof. From the definition $H(u, \lambda, \alpha, 0) = \alpha^2 \theta(u)Lu + \lambda \alpha E(u)$. Then one can see that $u = H(u, \lambda, \alpha, 0)$ if and only if $u = \alpha^2 \theta(u)Lu$. Moreover, since $\frac{1}{\alpha^2} \notin \sigma(L)$, $0 < \theta(u) < 1$ and therefore $u \in U$. It is easy to verify that the set $\{ u \in U : u = \alpha^2 \theta(u)Lu \}$ consists of a finite number of S^1 -orbits and is defined as follows

\[
\{ u \in U : u = \alpha^2 \theta(u)Lu \} = \bigcup_{i=1}^{n_0} \bigcup_{\nu \in \{-, +\}} \left\{ u \in V(\mu^\nu_i) : \mu^\nu_i \theta(u) = \frac{1}{\alpha^2} \right\}.
\]

Let $U^\pm_i \subset \text{cl}(U^\pm_i) \subset U, i = 1, \ldots, n_0$, be open, disjoint, S^1-invariant sets such that

\[
\left\{ u \in V(\mu^\nu_i) : \mu^\nu_i \theta(u) = \frac{1}{\alpha^2} \right\} \subset U^\pm_i, i = 1, \ldots, n_0.
\]

Therefore,

\[
\text{Deg}(Id - H(\cdot, \cdot, \alpha, 0), U) = \sum_{i=1}^{n_0} \sum_{\nu \in \{-, +\}} \text{Deg}(Id - H(\cdot, \cdot, \alpha, 0), U^\pm_i).
\]
Fix $i_0 \in \{1, \ldots, n_0\}$ and $\nu_0 \in \{-, +\}$. What is left is to show that

$$deg_Q(Id - H(\cdot, \cdot, \alpha, 0), U_{i_0}^{\nu_0}) = \begin{cases} 1, & \text{if } Q = \mathbb{Z}_{2i_0-1}, \\ 0, & \text{otherwise.} \end{cases}$$

Fix $(v_0, 0, 0) \in U_{i_0}^{\nu_0} \times [-1, 1] \subset \mathbb{H} \times [-1, 1] = \left(V \left(\mu_{i_0}^{\nu_0} \right) \oplus \left(V \left(\mu_{i_0}^{\nu_0} \right) \right)^\perp \right) \times [-1, 1]$ such that $\alpha^2 \theta(v_0) = 1/\mu_{i_0}^{\nu_0}$. It is easy to show that $D(u-H(u, \lambda, \alpha, 0))(v_0, 0, 0)$ is a surjection. Finally applying Theorem 6.7 (a) of [3] we complete the proof.

2. The proof is literally the same as the proof of (1).

\[\square\]

4. Proof of Theorems

Proof of Theorem 1.1.

Fix $\alpha > \frac{1}{\sqrt{1 + \sqrt{c_1c_2}}}$ and $M > m(\alpha)$. We also choose $m > 0$ so small that $\|u\|_{\infty} < 1$ for each $u \in \mathbb{H}$ with $\|u\| \leq m$. Choose λ_0 and δ_0 such that $\lambda_0 - \delta_0 > \delta_1(\alpha)$ and,

$$[0, \lambda_0] \subset \{ \lambda : \lambda \geq \delta_1(\alpha) \} \cup \left\{ \lambda : 0 \leq \lambda \leq \frac{\delta_0 m^2}{m(\alpha)^2} \right\}$$

(4.1)

Let $U \subset \mathbb{H} \oplus \mathbb{R}$ be a open set defined by

$$U = \{ v \in \mathbb{H} : m < \|v\| < M \} \times (-\lambda_0, \lambda_0).$$

Then the boundary ∂U of U has the form $\partial U = B_1 \cup B_2 \cup B_3$, where

$$B_1 = \{ v \in \mathbb{H} : \|v\| = m \} \times [-\lambda_0, \lambda_0],$$

$$B_2 = \{ v \in \mathbb{H} : \|v\| = M \} \times [-\lambda_0, \lambda_0],$$

$$B_3 = \{ v \in \mathbb{H} : m < \|v\| < M \} \times (-\lambda_0, \lambda_0).$$

We put

$$S_1 = \{(u, \lambda) \in \text{cl}(U) : u = H(u, \lambda, \alpha, \delta) \text{ for some } \delta \in [0, \delta_0]\}.$$

Then we claim that $S_1 \cap (B_1 \cup B_3) = \emptyset$. Suppose contrary to our claim that $\lambda = \pm \lambda_0$. Then $\theta(u) = 0$ by the definition. Then by (3.1), we have

$$\ddot{u} + \delta \alpha \frac{d}{dt} F(u) = \alpha \lambda \frac{d^2}{dt^2} E(u). \tag{4.2}$$

Multiplying (4.2) by u and integrating over $[0, 2\pi]$, we find by the periodicity of u that

$$\int_0^{2\pi} \dot{u}_1^2 = \int_0^{2\pi} \ddot{u}_1^2 = 0,$$

which implies $u \equiv 0$. This contradicts that $(u, \lambda) \in B_1 \subset (\mathbb{H} \setminus \{0\}) \times [-\lambda_0, \lambda_0]$. Suppose that $(u, \lambda) \in S_1 \cap B_3$. That is we assume that $\lambda = \pm \lambda_0$ and $m < \|u\| \leq M$. Fix $\lambda = -\lambda_0$. Since $\delta - \lambda_0 < 0$, from Lemma 3.5 it follows that $u = 0$, a contradiction. Suppose now that $\lambda = \lambda_0$. Since (3.2) holds with $\lambda = \lambda_0$, putting $\tilde{\delta} = \frac{\delta + \lambda_0}{\sqrt{\theta(u)}}$ and $w = \frac{\sqrt{\delta}}{\delta + \lambda_0} u$ we have that

$$\begin{cases} \ddot{w}_1 + \tilde{\delta} \alpha \tilde{\alpha} (w_1^2 - 1) \ddot{w}_1 + \tilde{\alpha}^2 (w_1 + c_2 w_2) = 0, \\ \ddot{w}_2 + \tilde{\delta} \alpha \tilde{\alpha} (w_2^2 - 1) \ddot{w}_2 + \tilde{\alpha}^2 (c_1 w_1 + w_2) = 0, \end{cases} \tag{4.3}$$

Therefore, we can conclude that $w \equiv 0$. This implies that $u \equiv 0$, contradicting the periodicity of u. Therefore, we have

$$\int_0^{2\pi} \ddot{w}_1 = \int_0^{2\pi} \ddot{w}_2 = 0,$$

which implies $w \equiv 0$. This contradicts that $(u, \lambda) \in B_3 \subset (\mathbb{H} \setminus \{0\}) \times [-\lambda_0, \lambda_0]$. Therefore, λ is not λ_0, a contradiction. Hence, we conclude that $\lambda = \pm \lambda_0$.
Notice that $\tilde{\alpha} = \alpha\sqrt{\theta(u)} \leq \alpha$ and $\tilde{\delta} = \delta + \lambda_0 \sqrt{\theta(u)} \geq \delta_1(\alpha)$. Therefore putting in Lemma 2.3 $\alpha = \tilde{\alpha}, \delta = \tilde{\delta}, \alpha' = \alpha$ we obtain that (4.3) can not hold. Notice that we have just shown that $S_1 \cap (B_1 \cup B_3) = \emptyset$. Notice that if $(u, \lambda) \in S_1 \cap B_2$, then taking into account that $\theta(u) = 1$, we obtain

$$\dot{w} + (\delta + \lambda)\alpha \frac{d}{dt} F(w) + \alpha^2 Aw = 0.$$

That is we have a solution of (P) with period $2\pi\alpha$ and with $\varepsilon_1, \varepsilon_2$ replaced with $((\delta + \lambda)\varepsilon_1, (\delta + \lambda)\varepsilon_2)$. We next define a homotopy $I : \mathbb{H} \times [0, 1] \rightarrow \mathbb{H}$ of S^1--equivariant compact mappings by

$$I(u, \lambda, s) = -\pi \left(\delta_0 \alpha \int_0^t F_s(v)dt \right) + a^2\theta(v)Lv + \alpha\lambda E(u)$$

where

$$F_s(u) = \left(\varepsilon_1 \left(\frac{1}{3} u_1^3 - (1 - s)u_1 \right) \right) \left(\frac{1}{3} u_2^3 - (1 - s)u_2 \right)$$

for $(u, s) \in \mathbb{H} \times [0, 1]$. It is easy to verify that I is a homotopy of S^1--equivariant compact mappings. We put

$$S_2 = \{(u, \lambda) \in U : I(u, \lambda, s) = u \text{ for some } s \in [0, 1]\}.$$

Then one can see that $(u, \lambda) \in S_2$ if and only if

$$\begin{cases} \dot{u}_1 + \delta_0 \varepsilon_1 \alpha (u_1^2 - 1 + s)\dot{u}_1 + a^2\theta(u)(u_1 + c_2u_2) = \varepsilon_1 \alpha \lambda \dot{u}_1, \\ \dot{u}_2 + \delta_0 \varepsilon_2 \alpha (u_2^2 - 1 + s)\dot{u}_2 + a^2\theta(u)(c_1u_1 + u_2) = \varepsilon_2 \alpha \lambda \dot{u}_2, \end{cases}$$

for some $s \in [0, 1]$. Repeating reasoning given above we can show that $S_2 \cap (B_1 \cup B_3) = \phi$. It also follows that if $(u, \lambda) \in B_2 \cap S_2$, then (P) has a solution with period $2\pi\alpha$. Therefore to complete the proof it is enough to show that $(S_1 \cup S_2) \cap B_2 \neq \emptyset$.

We next show that there is no element $(u, \lambda) \in cl(U)$ which satisfies that $I(u, \lambda, 1) = u$. Suppose contrary that there exists $(u, \lambda) \in cl(U)$ satisfying $I(u, \lambda, 1) = u$. Repeating reasoning given in the proof of Lemma 3.5 we show that $\lambda > 0$. Then by putting $w = \sqrt{\frac{\delta_0}{\lambda}} u$ we have that,

$$\begin{cases} \dot{w}_1 + \left(\frac{\lambda \alpha}{\tilde{\alpha}} \right) \varepsilon_1 \tilde{\alpha} (w_1^2 - 1)\dot{w}_1 + \tilde{\alpha}^2 (w_1 + c_2w_2) = 0, \\ \dot{w}_2 + \left(\frac{\lambda \alpha}{\tilde{\alpha}} \right) \varepsilon_2 \tilde{\alpha} (w_2^2 - 1)\dot{w}_2 + \tilde{\alpha}^2 (c_1w_1 + w_2) = 0, \end{cases}$$

where $\tilde{\alpha} = \alpha\sqrt{\theta(u)}$. If $\lambda > \delta_1(\alpha)$, then $\delta = \frac{\lambda \alpha}{\tilde{\alpha}} = \frac{\lambda}{\sqrt{\theta(u)}} > \delta_1(\alpha)$. Since $\tilde{\alpha} = \alpha\sqrt{\theta(u)} < \alpha$, from Lemma 2.3 it follows that (4.5) can not hold. On the other hand, if $\delta_0m^2 > \lambda m(\alpha)^2$, then $\|w\| \geq \|u\|\sqrt{\frac{\delta_0}{\lambda}} > m(\alpha)$. Then by Lemma 2.2, we have that (4.5) can not hold. Thus we find that $I(u, \lambda, 1) \neq u$ for all $(u, \lambda) \in cl(U)$. We now define a homotopy of mapping $\Psi : U \times [0, 1] \rightarrow \mathbb{H}$ by

$$\Psi(u, \lambda, s) = \begin{cases} H(u, \lambda, \alpha, 2\delta_0) \text{ for } (u, \lambda, s) \in U \times [0, \frac{1}{2}], \\ I(u, \lambda, 2s - 1) \text{ for } (u, \lambda, s) \in U \times [\frac{1}{2}, 1]. \end{cases}$$
Then since $Ψ(u, λ, 0) = H(u, λ, \alpha, 0) = Lu + \alpha \lambda E(u)$. Since $α > \frac{1}{\sqrt{1 + c_1 c_2}}$, $μ_1^+ > \frac{1}{α^2}$ and Lemma 3.6, we obtain $Deg(I - Ψ(\cdot, 0), U) \neq 0$. Now suppose that $u \neq Ψ(u, λ, s)$ for all $u \in \partial U$ and $s \in [0, 1]$. Then by the homotopy invariance of S^1–degree we find that $Deg(I - Ψ(\cdot, 1), U) \neq 0$. Then by property (1) of Theorem 3, we have that there exists $(u, λ) \in U$ satisfying $u = Ψ(u, λ, 1)$. This contradicts to the observation above. Therefore we have that there exists $(u, λ) \in \partial U$ such that $u = Ψ(u, λ, s)$ for some $s \in [0, 1)$. On the other hand, we have, from the argument above, that there is no solution $(u, λ)$ of problem $u = Ψ(u, λ, s)$ on $B_1 \cup B_3$ for all $s \in [0, 1)$. Thus we obtain that there exists a solution $(u, λ)$ of problem $u = Ψ(u, λ, s)$ on B_2 for some $s \in [0, 1)$. Then by the argument above, we obtain a solution of (P) with period $2πα$.

Proof of Theorem 1.2. We choose $α_0^2 \in \left(\frac{1}{μ_1^+}, \frac{1}{μ}\right)$, where $μ = μ_1^+$ when $c_1 c_2 < 1$ and $μ = μ_2^+$ when $c_1 c_2 > 1$. Then by Lemma 2.4 there exists $δ_2(α_0) > 0$ such that the problem (2.7) with $α = α_0$ has no solution for $δ \in (0, δ_2(α_0)]$. We will show that for any $δ \in (0, δ_2(α_0))$, the problem (2.7) has a solution for some $α \in (0, α_0)$. Suppose contrary that there exists $δ_1 \in (0, δ_2(α_0))$ such that problem (2.7) has no solution with $δ = δ_1$ for any $α \in (0, α_0)$. Then we claim that there exists $ρ \in (0, δ_1)$ such that $δ_1 + ρ < δ_2(α_0)$ and for any $δ \in [δ_1 - ρ, δ_1 + ρ]$, problem (2.7) has no solution for any $α \in (0, α_0)$. Suppose that there exists a sequence $\{u_n, δ_n, α_n\} \in H \times R^+ \times (0, α_0)$ such that $\lim_{n→∞} δ_n = δ_1$ and each u_n is a solution of problem (2.7) with $δ = δ_n$ and $α = α_n$. By Lemma 2.2 sequence $\{u_n\}$ is bounded in H. Therefore there exists a subsequence $\{u_{n_i}\}$ of $\{u_n\}$ such that $u_{n_i} \rightharpoonup u \in H$ weakly as $i → ∞$ and $\lim_{i→∞} α_{n_i} = α \in (0, α]$. One can see from (2.8) with $u = (u_1, u_2)$ replaced by $u_n = (u_{1n}, u_{2n})$ that $\|u_{1n}(t)\| \geq 1$ or $\|u_{2n}(t)\| \geq 1$ for some $t \in [0, 2π]$. That is u is a nontrivial solution of (2.7) with $δ = δ_1$, a contradiction.

Choose $M > 0$ such that $M \sqrt{\frac{ρ}{ρ + δ_1}} > m(α_0)$. Put

$$U = \{v \in H : m < \|v\| < M\} \times (−δ_1, δ_1)$$

$$B_1 = \{v \in H : \|v\| = m\} \times [−δ_1, δ_1],$$

$$B_2 = \{v \in H : \|v\| = M\} \times [−δ_1, δ_1],$$

$$B_3 = \{v \in H : m < \|v\| < M\} \times [−δ_1, δ_1].$$

We first see that there is no nontrivial solution u of problem $u = H(u, λ, α_0, (1 − s)ρ)$ for any $s \in [0, 1]$. That is there is no nontrivial solution of

$$\ddot{u} + (1 − s)ρα_0 \frac{d}{dt} F(u) + α_0^2 Au = λα_0 \frac{d^2}{dt^2} E(u) \quad (4.6)$$

Suppose that $u \in U$ is a solution of problem (4.6). If $s = 1$, then u is a solution of

$$\ddot{u} − λα_0 \frac{d^2}{dt^2} E(u) + α_0^2 Au = 0 \quad (4.7)$$

Then multiplying (4.7) by \dot{u} and integrating over $[0, 2π]$, we obtain $u = 0$, a contradiction. Suppose now that $s < 1$. In case $(1 − s)ρ + λ \leq 0$, problem (4.6) has no nontrivial solution by
Lemma 3.5. If \((1 - s)\rho + \lambda > 0\), then \(w = \sqrt{\frac{(1 - s)\rho}{(1 - s)\rho + \lambda}} u\) is a solution of
\[
\dot{w} + \delta \alpha_0 \frac{d}{dt} F(w) + \alpha^2 w = 0,
\]
where \(\delta = \lambda + (1 - s)\rho\). Since \(\delta \leq \delta_1 + \rho < \delta_2(\alpha_0)\), this contradicts to the definition of \(\delta_2(\alpha_0)\). Thus we find that (4.6) has no solution in \(U\). Define a homotopy of compact mappings \(\tilde{H} : U \times [0, 1] \to \mathbb{H}\) by
\[
\tilde{H}(u, \lambda, s) = H(u, \lambda, \alpha_0((1 - s) + s\theta(u)), (1 - s)\rho), \quad \text{for } (u, \lambda) \in U \quad \text{and } s \in [0, 1],
\]
where \(\theta : \mathbb{H} \to [0, 1]\) is given by (2.4). One can see that \(\tilde{H}(u, \lambda, s) = H(u, \lambda, \alpha_0, \rho)\) for \((u, \lambda) \in U\). We will see that there exists no solution \(u = \tilde{H}(u, \lambda, s)\) on \(\partial U\) for any \(s \in [0, 1]\). Suppose, contrary to our claim that \(u = \tilde{H}(u, \lambda, s)\) for some \(u \in \partial U\) and \(s \in [0, 1]\). Suppose that \(u \in B_2\). Then putting \(\alpha = \alpha_0((1 - s) + s\theta(u))\) and \(w = \sqrt{\frac{(1 - s)\rho}{(1 - s)\rho + \lambda}} u\) we have that \(w\) is a solution of
\[
\dot{w} + \delta \alpha \frac{d}{dt} F(w) + \alpha^2 w = 0 \quad (4.8)
\]
where \(\delta = (1 - s)\rho + \lambda\). Since \(\|u\| = M\), we have that
\[
\|w\| = \sqrt{\frac{(1 - s)\rho}{(1 - s)\rho + \lambda}}\|u\| = \sqrt{\frac{(1 - s)\rho}{(1 - s)\rho + \lambda}} > m(\alpha_0).
\]
On the other hand, we have by Lemma 2.2 that \(\|w\| < m(\alpha) \leq m(\alpha_0)\), a contradiction. Finally suppose that \(u \in B_3\). If \(\lambda = -\delta_1\), then we reach a contradiction by Lemma 3.5. Suppose that \(\lambda = \delta_1\). Then \(\delta = (1 - s)\rho + \delta_1 \in [\delta_1 - \rho, \delta_1 + \rho]\). Therefore by the assumption, (4.8) has no nontrivial solution. Summing up, we have shown that \(u \notin \partial U\). Therefore by the homotopy invariance of degree for \(S^1\)-equivariant maps we obtain that \(\text{Deg}(I - \tilde{H}(\cdot, \cdot, 0), U) = \text{Deg}(I - H(\cdot, \cdot, 1), U)\). Since \(I - \tilde{H}(\cdot, \cdot, 0) \neq 0\) on \(U\) by the same argument we have that \(\text{Deg}(I - \tilde{H}(\cdot, \cdot, 0), U) = 0\). On the other hand, noting that \(\tilde{H}(\cdot, \cdot, 1) = H(\cdot, \cdot, \alpha_0, 0)\), by Lemma 3.6 we obtain that \(\text{Deg}(I - \tilde{H}(\cdot, \cdot, 1), U) \neq 0\), a contradiction. Which completes the proof.

References

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF ENVIRONMENT AND INFORMATION SCIENCES, YOKOHAMA NATIONAL UNIVERSITY, 156 TOWADAI, HODOGAYA, YOKOHAMA 240, JAPAN
E-mail address: hirano@hiranolab.jks.ynu.ac.jp

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, NICOLAUS COPERNICUS UNIVERSITY, PL-87-100 TORUŃ, UL. CHOPINA 12/18, POLAND
E-mail address: Slawomir.Rybicki@mat.uni.torun.pl